Compressive Recovery of Sparse Precision Matrices

Etienne Lasalle

Titouan Vayer

Rémi Gribonval

Paulo Gonçalves

Journées de Statistiques, Bordeaux. May 2024.

The problem

GLASSO approach [FHT08], [BGA08]

Naive estimator of Θ (MLE): $\widehat{\Sigma}^{-1}$ (Not sparse)

Graphical Lasso *i.e.*, ℓ_1 -penalized maximum likelihood estimator

3

$$\begin{split} \widehat{\boldsymbol{\Theta}}_{\mathrm{GL}} &\stackrel{\Delta}{=} \operatorname*{arg\,min}_{\boldsymbol{\Theta} \succ 0} \left\{ -\log \det(\boldsymbol{\Theta}) + \langle \widehat{\boldsymbol{\Sigma}}, \boldsymbol{\Theta} \rangle + \lambda \|\boldsymbol{\Theta}\|_{1,\mathrm{off}} \right\}, \\ \widehat{\boldsymbol{\Sigma}} &= \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i} \mathbf{x}_{i}^{T} \\ \|\boldsymbol{\Theta}\|_{1,\mathrm{off}} &= \sum_{i < j} |\boldsymbol{\Theta}_{ij}| \\ \lambda : \text{ regularization parameter} \end{split}$$

Memory cost : $\mathcal{O}(\mathbf{d}^2)$ (storage of $\widehat{\Sigma}$). Computational cost : $\mathcal{O}(\mathbf{d}^3)$.

[FHT08] Friedman et. al., Sparse inverse covariance estimation with the graphical lasso, (2008) [BGA08] Banerjee et al., Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data, (2008)

[GCK+21] Gribonval et al., Sketching Data Sets for Large-Scale Learning: Keeping only what you need, 4 - 2 (2021)

[GCK+21] Gribonval et al., Sketching Data Sets for Large-Scale Learning: Keeping only what you need, **4 - 3** (2021)

[GCK+21] Gribonval et al., Sketching Data Sets for Large-Scale Learning: Keeping only what you need, **4 - 4** (2021)

[GCK+21] Gribonval et al., Sketching Data Sets for Large-Scale Learning: Keeping only what you need, **4 - 5** (2021)

Random Rank-One Projections (ROP)

$$\Phi(\mathbf{x}) \stackrel{\Delta}{=} m^{-1} \left(\langle \mathbf{A}_1, \mathbf{x} \mathbf{x}^\top
angle, \dots, \langle \mathbf{A}_m, \mathbf{x} \mathbf{x}^\top
angle
ight)^\top$$

with $\mathbf{A}_1, \ldots, \mathbf{A}_m$ random $d \times d$ matrices.

$$\mathbf{s} = \frac{1}{n} \sum_{i=1}^{n} \Phi(\mathbf{x}_i) = m^{-1}(\langle \mathbf{A}_j, \widehat{\mathbf{\Sigma}} \rangle)_j = \mathcal{A}(\widehat{\mathbf{\Sigma}})$$

Noisy linear measurement of Σ . (Compressed Sensing, Inv. Pb)

Random Rank-One Projections (ROP)

$$\Phi(\mathbf{x}) \stackrel{\Delta}{=} m^{-1} \left(\langle \mathbf{A}_1, \mathbf{x} \mathbf{x}^{ op}
angle, \dots, \langle \mathbf{A}_m, \mathbf{x} \mathbf{x}^{ op}
angle
ight)^{ op}$$

with A_1, \ldots, A_m random $d \times d$ matrices.

$$\mathbf{s} = \frac{1}{n} \sum_{i=1}^{n} \Phi(\mathbf{x}_i) = m^{-1}(\langle \mathbf{A}_j, \widehat{\mathbf{\Sigma}} \rangle)_j = \mathcal{A}(\widehat{\mathbf{\Sigma}})$$

Noisy linear measurement of Σ . (Compressed Sensing, Inv. Pb)

Computational and memory cost of $\Phi(x)$:

	Comp. 🛛	Memory 🛢	
\mathbf{A}_j full rank	$\mathcal{O}(md^2)$	$\mathcal{O}(md^2)$	
\mathbf{A}_j rank one $\mathbf{A}_j = \mathbf{a}_j \mathbf{a}_j^ op$	$\mathcal{O}(md)$	$\mathcal{O}(md)$	[CZ15] [CCG15]
	$\left(\mathbf{a}_1^{ op}\mathbf{x} ^2,\ \cdots, \mathbf{a}_n^{ op} ight)$	$\sum_{m}^{ op} \mathbf{x} ^2 ig)^{ op}$	

[CZ15] Cai and Zhang, Rop: Matrix recovery via rank-one prokections, (2015)
 [CCG15] Chen et al., Exact and stable covariance estimation from quadratic sampling via convex
 5 - 2 programming, (2015)

Borrowing from Compressed Sensing [FR13]

$$\mathbf{s} = \frac{1}{n} \sum_{i=1}^{n} \Phi(\mathbf{x}_{i}) = \mathbf{m}^{-1}(\langle \mathbf{A}_{j}, \widehat{\boldsymbol{\Sigma}} \rangle)_{j} = \mathcal{A}(\widehat{\boldsymbol{\Sigma}})$$

Definition: Restricted Isometry Property (RIP).

The sketching operator \mathcal{A} satisfies $\operatorname{RIP}(\delta, \mathfrak{S})$, if for every $\Sigma_1, \Sigma_2 \in \mathfrak{S} \subseteq S_d$,

 $(1-\delta) \|\boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2\| \le \|\boldsymbol{\mathcal{A}}(\boldsymbol{\Sigma}_1) - \boldsymbol{\mathcal{A}}(\boldsymbol{\Sigma}_2)\| \le (1+\delta) \|\boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2\|.$

6 - 1 [FR13] Foucart and Rauhut, A Mathematical Introduction to Compressive Sensing, (2013)

Borrowing from Compressed Sensing [FR13]

$$\mathbf{s} = \frac{1}{n} \sum_{i=1}^{n} \Phi(\mathbf{x}_i) = m^{-1}(\langle \mathbf{A}_j, \widehat{\mathbf{\Sigma}} \rangle)_j = \mathcal{A}(\widehat{\mathbf{\Sigma}})$$

Definition: Restricted Isometry Property (RIP).

The sketching operator \mathcal{A} satisfies $\operatorname{RIP}(\delta, \mathfrak{S})$, if for every $\Sigma_1, \Sigma_2 \in \mathfrak{S} \subseteq S_d$,

 $(1-\delta) \|\boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2\| \le \|\boldsymbol{\mathcal{A}}(\boldsymbol{\Sigma}_1) - \boldsymbol{\mathcal{A}}(\boldsymbol{\Sigma}_2)\| \le (1+\delta) \|\boldsymbol{\Sigma}_1 - \boldsymbol{\Sigma}_2\|.$

Consequence :

"Optimal Decoder" :
$$\Sigma^{\star} \stackrel{\Delta}{=} \arg\min_{\tilde{\Sigma} \in \mathfrak{S}} \|\mathcal{A}(\tilde{\Sigma}) - \mathbf{s}\|$$

$$\begin{split} \mathfrak{S}_{k,a,b} &\stackrel{\Delta}{=} \left\{ \mathbf{\Sigma} \succ 0, \ \mathbf{\Theta} = \mathbf{\Sigma}^{-1} \text{ is } (d+2k) \text{-sparse}, \ \operatorname{spec}(\mathbf{\Theta}) \subseteq [a,b] \right\} . \\ \|\mathcal{A}(\mathbf{M})\| &= \|\mathcal{A}(\mathbf{M})\|_1 \text{ and } \|\mathbf{M}\| \text{ defined from } \mathcal{L}(\mathbf{a}) \text{ s.t. } \mathbb{E} \left[\|\mathcal{A}(\mathbf{M})\|_1 \right] = \|\mathbf{M}\|. \end{split}$$

 $\|(\boldsymbol{\Sigma}^{\star})^{-1} - \boldsymbol{\Theta}\|_{\mathrm{Fro}} \leq Cb^2 \boldsymbol{d} \|\boldsymbol{\Sigma}^{\star} - \boldsymbol{\Sigma}\| \leq \frac{2Cb^2 \boldsymbol{d}}{(1-\delta)} \|\mathcal{A}(\widehat{\boldsymbol{\Sigma}}) - \mathcal{A}(\boldsymbol{\Sigma})\|_1.$

6 - 2 [FR13] Foucart and Rauhut, A Mathematical Introduction to Compressive Sensing, (2013)

Theoretical recovery guarantees

$$\mathfrak{S}_{k,a,b} \stackrel{\Delta}{=} \left\{ \Sigma \succ 0, \ \mathbf{\Theta} = \Sigma^{-1} \text{ is } (d+2k) \text{-sparse}, \ \operatorname{spec}(\mathbf{\Theta}) \subseteq [a,b] \right\}.$$

 $\left(\|\mathcal{A}(\mathbf{M})\| = \|\mathcal{A}(\mathbf{M})\|_1 \text{ and } \|\mathbf{M}\| \text{ defined from } \mathcal{L}(\mathbf{a}) \text{ s.t. } \mathbb{E}\left[\|\mathcal{A}(\mathbf{M})\|_1\right] = \|\mathbf{M}\|.$

Theorem : [VLGG23]

Let \mathcal{A} be our sketching operator and $\mathbf{a}_1, \ldots, \mathbf{a}_m \overset{i.i.d.}{\sim}$ Gaussian or Unif. on S_d . $\forall \delta \in]0,1[, \exists C = C(\delta, b/a) \text{ s.t. whenever}$

 $m \ge C(d+2k)\log d\,,$

 \mathcal{A} satisfies $\operatorname{RIP}(\delta, \mathfrak{S}_{k,a,b})$ with high probability.

[VLGG23] Vayer, L., Gribonval, Gonçalves, *Compressive Recovery of Sparse Precision Matrices*, (2023) 7 - 1 (arXiv:2311.04673)

Theoretical recovery guarantees

$$\begin{aligned} & \left| \mathfrak{S}_{k,a,b} \stackrel{\Delta}{=} \left\{ \mathbf{\Sigma} \succ 0, \ \mathbf{\Theta} = \mathbf{\Sigma}^{-1} \text{ is } (d+2k) \text{-sparse}, \ \operatorname{spec}(\mathbf{\Theta}) \subseteq [a,b] \right\} \\ & \left\| \mathcal{A}(\mathbf{M}) \right\| = \| \mathcal{A}(\mathbf{M}) \|_1 \text{ and } \| \mathbf{M} \| \text{ defined from } \mathcal{L}(\mathbf{a}) \text{ s.t. } \mathbb{E} \left[\| \mathcal{A}(\mathbf{M}) \|_1 \right] = \| \mathbf{M} \|. \end{aligned}$$

Let \mathcal{A} be our sketching operator and $\mathbf{a}_1, \ldots, \mathbf{a}_m \overset{i.i.d.}{\sim}$ Gaussian or Unif. on S_d . $\forall \delta \in]0,1[, \exists C = C(\delta, b/a) \text{ s.t. whenever}$

 $m \ge C(d+2k)\log d\,,$

 \mathcal{A} satisfies $\operatorname{RIP}(\delta, \mathfrak{S}_{k,a,b})$ with high probability.

Theorem : [VLGG23]

$$\mathfrak{S}_{k,a,b} \longleftrightarrow \mathfrak{S}_{k,\kappa_0} \stackrel{\Delta}{=} \left\{ \mathbf{\Sigma} \succ 0, \ \mathbf{\Theta} = \mathbf{\Sigma}^{-1} \text{ is } (d+2k) \text{-sparse}, \ \kappa(\mathbf{\Theta}) \leq \kappa_0 \right\},\$$
$$C(\delta, b/a) \longleftrightarrow C(\delta, \kappa_0)$$

[VLGG23] Vayer, L., Gribonval, Gonçalves, *Compressive Recovery of Sparse Precision Matrices*, (2023) 7 - 2 (arXiv:2311.04673)

	Encoding		Decoding
$m \ge$	$C(\mathbf{d}+2k)$ lo	g d	"Optimal Decoder" :
A full rank	$Comp. \underline{A}$	$(O(m, d^2))$	$\mathbf{\Sigma}^{\star} \stackrel{\Delta}{=} rgmin \ \mathcal{A}(\tilde{\mathbf{\Sigma}}) - \mathbf{s}\ $
\mathbf{A}_j full falls	$O(ma^{-})$	$O(ma^{-})$	$\Sigma \in \mathfrak{S}$
\mathbf{A}_j rank one $\mathbf{A}_j = \mathbf{a}_j \mathbf{a}_j^ op$	$\mathcal{O}(\frac{md}{md}) = \mathcal{O}(d^2 \log d)$	$\mathcal{O}(\mathbf{m}d) = \mathcal{O}(d^2 \log d)$	(Unsolvable)

Encoding			Decoding	
$m \geq r$	$C(d+2k) \log (d+2k)$	g <i>d</i> Memory €	"Optimal Decoder" :	
\mathbf{A}_j full rank	$\mathcal{O}(md^2)$	$\mathcal{O}(md^2)$	$egin{array}{c} \mathbf{\Sigma}^\star \stackrel{\simeq}{=} rg\min_{\mathbf{ ilde{\Sigma}}\in\mathfrak{S}} \ \mathcal{A}(\mathbf{\Sigma}) - \mathbf{s}\ \ \mathbf{ ilde{\Sigma}}\in\mathfrak{S} \end{array}$	
\mathbf{A}_j rank one $\mathbf{A}_j = \mathbf{a}_j \mathbf{a}_j^ op$ Structured \mathbf{A}_j	$\mathcal{O}(md)$ $=$ $\mathcal{O}(d^2 \log d)$ $\mathcal{O}(m \log d)$	$ \begin{array}{c} \mathcal{O}(md) \\ = \\ \mathcal{O}(d^2 \log d) \\ \mathcal{O}(m) \end{array} $	(Unsolvable) → Iterative algorithm (inspired by <i>Proximal Gradient Descent</i>)	

In practice (Encoding)

Reformulate : $\Phi(\mathbf{x}) = \frac{1}{m} (\mathbf{A}\mathbf{x})^{\odot 2}$

 $\mathbf{H}x$ can be computed in $\mathcal{O}(\mathbf{d}\log\mathbf{d})$, without storing \mathbf{H} (fast Hadamard Transform).

	Comp.	Memory	
Structured \mathbf{A}	$\mathcal{O}(m \log d)$	$\mathcal{O}(m)$	

9

Experiments

Conclusion

Perspectives:

- Extending the theory to *structured* sketching operators.
- Guarantees for the practical decoder? (convergence? to what?)
- A more efficient practical decoder?
- Can we recover only properties of the graphs (*e.g.*, clusters)

Preprint:

Compressive Recovery of Sparse Precision Matrices, Vayer, L., Gribonval, Gonçalves (2023) (arXiv:2311.04673)

Conclusion

Perspectives:

- Extending the theory to *structured* sketching operators.
- Guarantees for the practical decoder? (convergence? to what?)
- A more efficient practical decoder?
- Can we recover only properties of the graphs (*e.g.*, clusters)

Preprint:

Compressive Recovery of Sparse Precision Matrices, Vayer, L., Gribonval, Gonçalves (2023) (arXiv:2311.04673)

Thank you for your attention.

In practice (Decoding)

A more practical decoding scheme:

 $f(\mathbf{\Sigma}) \stackrel{\Delta}{=} \frac{1}{2} ||\mathcal{A}(\mathbf{\Sigma}) - \mathbf{s}||_{2}^{2} \text{ (sketch fidelity)}$ $\sum_{0} \geq 0$ $\sum_{t+\frac{1}{2}} = \sum_{t} - \gamma \nabla f(\Sigma_{t}) \text{ (gradient descent step)}$ $\sum_{t+1} = \text{GLASSO}_{\gamma\lambda}[\Sigma_{t+\frac{1}{2}}] \text{ (denoising)}$

In practice (Decoding)

A more practical decoding scheme:

Ĵ

$$\begin{split} \hat{T}(\mathbf{\Sigma}) &\stackrel{\Delta}{=} \frac{1}{2} \| \mathcal{A}(\mathbf{\Sigma}) - \mathbf{s} \|_{2}^{2} \text{ (sketch fidelity)} \\ & \mathbf{\Sigma}_{0} \succ 0 \\ \mathbf{\Sigma}_{t+\frac{1}{2}} = \mathbf{\Sigma}_{t} - \gamma \nabla f(\mathbf{\Sigma}_{t}) \quad \text{(gradient descent step)} \\ & \mathbf{\Sigma}_{t+1} = \mathrm{GLASSO}_{\gamma \lambda} [\mathbf{\Sigma}_{t+\frac{1}{2}}] \quad \text{(denoising)} \end{split}$$

Link with (Bregman) Proximal Gradient descent:

$$\arg\min_x \{f(x) + g(x)\}$$

init. x_0 $x_{t+\frac{1}{2}} = x_t - \gamma \nabla f(x_t)$ (gradient descent step) $x_{t+1} = \operatorname{prox}_g(x_{t+\frac{1}{2}})$ (proximal step)

 $\stackrel{\bullet}{\frown} \stackrel{\Delta}{=} \operatorname{arg\,min}_{u} \left\{ g(u) + \frac{1}{2} \|u - x_{t+\frac{1}{2}}\|_{2}^{2} \right\}$

12 - 2

In practice (Decoding)

A more practical decoding scheme:

$$\begin{split} \hat{T}(\mathbf{\Sigma}) &\stackrel{\Delta}{=} \frac{1}{2} \| \mathcal{A}(\mathbf{\Sigma}) - \mathbf{s} \|_{2}^{2} \text{ (sketch fidelity)} \\ & \mathbf{\Sigma}_{0} \succ 0 \\ \mathbf{\Sigma}_{t+\frac{1}{2}} = \mathbf{\Sigma}_{t} - \gamma \nabla f(\mathbf{\Sigma}_{t}) \quad \text{(gradient descent step)} \\ & \mathbf{\Sigma}_{t+1} = \mathrm{GLASSO}_{\gamma \lambda} [\mathbf{\Sigma}_{t+\frac{1}{2}}] \quad \text{(denoising)} \end{split}$$

Link with (Bregman) Proximal Gradient descent:

$$\arg\min_x \{f(x) + g(x)\}$$

init. x_0

 $\begin{aligned} x_{t+\frac{1}{2}} &= x_t - \gamma \nabla f(x_t) & \text{(gradient descent step)} \\ x_{t+1} &= \operatorname{prox}_g^h(x_{t+\frac{1}{2}}) & \text{(Bregman proximal step)} \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$

 $\operatorname{GLASSO}_{\lambda}[\mathbf{Z}] \stackrel{\Delta}{=} \operatorname{arg\,min}_{\mathbf{\Sigma} \succ 0} \left\{ \lambda \| \mathbf{\Sigma}^{-1} \|_{1, \mathsf{off}} + D_h(\mathbf{Z} | \mathbf{\Sigma}) \quad \text{with } h(\mathbf{X}) = -\log \det \mathbf{X} \right\}$ 12 - 3

Rewrite the RIP:

$$\operatorname{RIP}(\delta, \mathfrak{S}_{k,a,b}) \Leftrightarrow |||\mathcal{A}(\mathbf{U})||_1 - 1| \leq \delta, \quad \forall \mathbf{U} \in S[\mathfrak{S}_{k,a,b}]$$

Normalized secant :
$$S[\mathfrak{S}_{k,a,b}] \stackrel{\Delta}{=} \left\{ \frac{\Sigma_1 - \Sigma_2}{\|\Sigma_1 - \Sigma_2\|}, \ \Sigma_1, \Sigma_2 \in \mathfrak{S}_{k,a,b} \right\}$$

Goal:
$$\mathbb{P}\left(\| \mathcal{A}(\mathbf{U}) \|_1 - 1 \| \le \delta, \quad \forall \mathbf{U} \in S[\mathfrak{S}_{k,a,b}] \right) \ge 1 - \rho$$

Ingredients:

• Pointwise concentration :

$$\forall \mathbf{U} \in S[\mathfrak{S}_{k,a,b}], \ \forall t > 0, \ \mathbb{P}\left(|||\mathcal{A}(\mathbf{U})||_1 - 1| > t\right) \le C(t)$$

• Control of covering numbers:

 $\mathcal{N}(S[\mathfrak{S}_{k,a,b}], \|\cdot\|_{\Lambda}, \varepsilon) \stackrel{\Delta}{=} \#$ balls of size ε to cover $S[\mathfrak{S}_{k,a,b}]$

Experiments

